This article was downloaded by:

On: 26 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

Evaluation of Capillary HPLC/Mass Spectrometry as an Alternative Analysis Method for Gel Electrophoresis of Oligonucleotides

Jef Rozenski^a; Karen Vastmans^a; Arthur Van Aerschot^a; Piet Herdewijn^a K.U. Leuven, Rega Institute for Medical Research, Leuven, Belgium

Online publication date: 09 August 2003

To cite this Article Rozenski, Jef , Vastmans, Karen , Van Aerschot, Arthur and Herdewijn, Piet(2003) 'Evaluation of Capillary HPLC/Mass Spectrometry as an Alternative Analysis Method for Gel Electrophoresis of Oligonucleotides', Nucleosides, Nucleotides and Nucleic Acids, 22: 5, 1513 - 1516

To link to this Article: DOI: 10.1081/NCN-120023023 URL: http://dx.doi.org/10.1081/NCN-120023023

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS Vol. 22, Nos. 5–8, pp. 1513–1516, 2003

Evaluation of Capillary HPLC/Mass Spectrometry as an Alternative Analysis Method for Gel Electrophoresis of Oligonucleotides

Jef Rozenski,* Karen Vastmans, Arthur Van Aerschot, and Piet Herdewijn

Rega Institute for Medical Research, K.U. Leuven, Leuven, Belgium

ABSTRACT

A method has been developed to monitor the enzymatic incorporation of nucleotides in DNA by electrospray HPLC mass spectrometry. The main advantages of mass spectrometry over electrophoresis are the ability to directly characterize the reaction products and the shorter analysis time.

Key Words: LC/MS; Oligonucleotides; DNA polymers.

INTRODUCTION

Polyacrylamide gel electrophoresis (PAGE) is a commonly used method for analysis of oligonucleotides. Disadvantages are the need of radioactive labeling, the time-consuming development of the gels and the need for reference compounds to be included in each run. In this work the DNA polymerase catalyzed incorporation

1513

DOI: 10.1081/NCN-120023023 Copyright © 2003 by Marcel Dekker, Inc.

www.dekker.com

270 Madison Avenue, New York, New York 10016

1525-7770 (Print); 1532-2335 (Online)

^{*}Correspondence: Jef Rozenski, K.U. Leuven, Rega Institute for Medical Research, Minder-broedersstraat 10, 3000 Leuven, Belgium; Fax: +32 16 33 73 40; E-mail: jef.rozenski@rega. kuleuven.ac.be.

1514 Rozenski et al.

of nucleotide triphosphates into primer-template DNA duplexes was followed with PAGE and with capillary HPLC/MS.^[1]

RESULTS AND DISCUSSION

Enzymatic reactions were carried out using Vent (exo-) DNA polymerase. To the primer-template DNA hybrid (2.5 μ M), deoxynucleotide triphosphates (dNTPs, 200 μ M) and enzyme (0.02 U/ μ L) were added. After incubation (10 min. at 55°C), the reactions were quenched by freezing the reaction mixtures. Analysis by PAGE has been described previously. The experimental conditions were optimized in such way that enzymatic reaction mixtures could be injected directly onto the HPLC column. Despite the fact that the current conditions are less sensitive, mass spectrometry proved to be a better choice for determination of the oligonucleotide length and

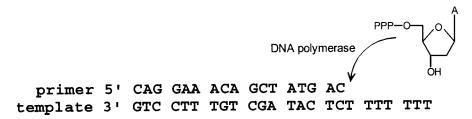
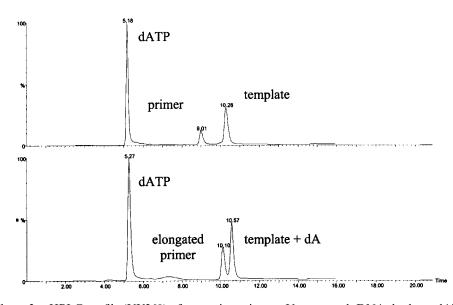



Figure 1. Incorporation of nucleotides using DNA polymerase.

Figure 2. HPLC profile (UV260) of a reaction mixture. Upper panel: DNA duplex + dATP, lower panel: DNA duplex + dATP + enzyme.

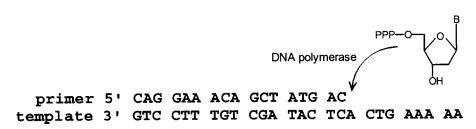
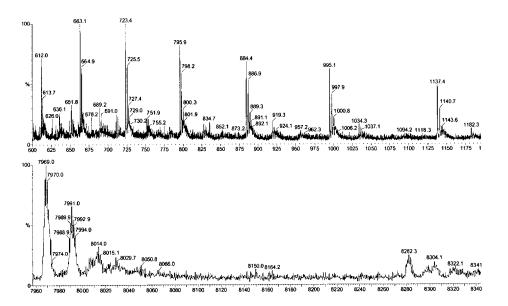



Figure 3. Verification of the sequence specificity by adding a mixture of all four dNTPs.

sequence. Other advantages are the ability for automated analysis and the shorter overall analysis time.

Figure 1 shows the enzymatic incorporation scheme for a single nucleotide triphosphate. Although the primer can be extended by seven residues, we found that at higher enzyme concentrations, an extra nucleotide was appended at the 3' end of the primer and at the 3' end of the template. In addition to the UV traces shown in Fig. 2, the electrospray mass spectra obtained in negative ionization mode gave information about the identity of the oligonucleotides in the reaction mixture.

The sequence specificity was verified by adding a mixture of all four dNTPs in the reaction depicted in Fig. 3. The reaction products found were as expected from the template sequence (Fig. 4) and the 3' end of the primer could be sequenced through fragmentation in the mass spectrometer and proved to be correct.

Figure 4. Reaction products formed by enzymatic incorporation as shown in Fig. 3. Lower panel: deconvoluted spectrum showing partial incorporation of an extra nucleotide (mass 8282).

1516 Rozenski et al.

REFERENCES

1. Apffel, A.; Chakel, J.A.; Fischer, S.; Lichtenwalter, K.; Hancock, W.S. Analysis of oligonucleotides by HPLC-electrospray ionization mass spectrometry. Anal. Chem. **1997**, *69*, 1320–1325.

2. Vastmans, K.; Pochet, S.; Peys, A.; Kerremans, L.; Van Aerschot, A.; Hendrix, C.; Marlière, P.; Herdewijn, P. Enzymatic incorporation in DNA of 1,5-anhydrohexitol nucleotides. Biochemistry **2000**, *39*, 12,757–12,765.